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Abstract

In attempting to predict the further course of the novel coronavirus disease (COVID-19) pandemic caused by

SARS-CoV-2, mathematical models of different types are frequently employed and calibrated to reported case

numbers. Among the major challenges in interpreting these data is the uncertainty about the amount of undetected

infections, or conversely: the detection ratio. As a result, some models make assumptions about the percentage of

detected cases among total infections while others completely neglect undetected cases. Here, we illustrate how

model projections about case and fatality numbers vary significantly under varying assumptions on the detection

ratio. Uncertainties in model predictions can be significantly reduced by representative testing, both for antibodies

and active virus RNA, to uncover past and current infections that have gone undetected thus far.
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Background

The World Health Organization declared the outbreak of

the respiratory disease COVID-19 (coronavirus disease

2019, caused by the virus SARS-CoV-2, Severe Acute Res-

piratory Syndrome CoronaVirus 2) a global pandemic on

March 11, 2020. In the past months, numerous efforts

have been undertaken to understand the properties of

SARS-CoV-2 and control the spread of the disease. While

it has been repeatedly observed that the disease occurs

in different severities, from very mild to critical, it is yet

to be clarified to what extent pre-symptomatic or asymp-

tomatic infections do contribute to the spread of the virus.

Whereas pre-symptomatic individuals are clearly conta-

gious with the highest infectiousness reportedly being

reached right before symptom onset, the jury is still out on
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the amount of viral particles released from asymptomatic

cases and the resulting risk of transmission.

In the attempt to predict the course of the outbreak

and to possibly achieve its mitigation, mathematical mod-

els have been devised to predict the course, and possible

outcomes for different countries have been presented. It

was noted by several authors ( e.g., [1] ) that an impor-

tant parameter of the epidemic is the detection ratio,

meaning the percentage of infections that are actually dis-

covered. Most mathematical models are able to reproduce

the chronology of case numbers under widely varying

assumptions on the value of the detection ratio. In par-

ticular, as has been noted in [2], the dynamic parameters

like the reproduction number R derived from the case

number data are completely independent of the detec-

tion ratio, assuming the latter is constant over time. This

assumption, however, is debatable. For example in Ger-

many, according to reports of the Robert Koch Institute

(RKI), while the number of administered tests significantly

increased in mid March 2020 (from some 127,000 in week
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11 to some 360,000 in week 12) and then remained at lev-

els between 300,000 and 450,000, the number of positive

cases kept declining throughout May 2020.

Since detection ratios are also notoriously hard to obtain

at early stages of an epidemic, many models use overly

optimistic detection ratios of 90% or more [3], or do not

even take undetected cases into account at all [4, 5]. The

differences in reported case numbers during the initial

phase of an epidemic outbreak may not be noticeable.

However, in the long run, the number of undetected infec-

tions, and in particular undetected recoveries, plays a

major role in reducing the number of susceptible indi-

viduals within a population and thereby achieving the

threshold of herd immunity. Though in some countries

this might have been deemed a possible strategy, achiev-

ing herd immunity in Germany without a vaccine available

was not seen much as an option. Moreover, as has been

pointed out by, e.g., [6], the number of undiscovered infec-

tions is missing in the denominator when case fatality

rates, i.e., the percentage of infected individuals dying

from the disease, are being calculated. The uncertainty

about detection ratios seems to be a major determinant of

widely varying estimates for the mortality of COVID-19,

in particular when plain case fatality rates are considered.

Unfortunately, different approaches to determining

these ratios have delivered a huge range of estimates

for different geographic regions, ranging from detection

ratios as low as 2% [7] to approximately 35% [7, 8], and it

is not obvious how much of the variation is accounted for

by actual differences in detection rates between countries

and how much methodology contributes to these dif-

ferences. For Germany, preliminary unofficial results for

Gangelt in the county of Heinsberg [9], seem to yield about

10-20% case detection. Consistently, screening for anti-

bodies, and therefore counting recovered individuals as

well as currently infected ones, seems to yield lower esti-

mates than screening studies using PCR-tests for active

virus RNA. Possible reasons may include that (i) mild

infections could easily go unnoticed, or that (ii) false neg-

ative rates of PCR-tests being caused by less than perfect

sample collection [10].

We have previously proposed mathematical models for

the dynamics of COVID-19 infections in Germany, in

particular taking into account the effect of current and

possible non-pharmaceutical control measures [11]. For

the simulated scenarios in our most recent work [11], we

assumed detection ratios closer to the upper end of the

range detailed above (close to 40%) and remarked that

the predicted fatality numbers should be expected to look

very different when a lower detection ratio is assumed.

To illustrate this effect, we present here the results

of simulations assuming different detection ratios, while

maintaining unchanged assumptions on the other basic

model parameters. For the scenarios whichwe show below

we do not take into account the limited capacity of the

health care system (this factor would further aggravate

the situation in scenarios with high numbers of active

cases). Our simulations shall only show the time course of

both known and total active cases, as well as the cumu-

lative number of fatalities. The latter model output is not

only of high importance but also particularly sensitive to

assumptions on detection.

Results and discussion

In order to illustrate how different assumptions on the

detection ratio (DR) affect predictions of the epidemic’s

course, we show here simulation results for a few scenarios

under the assumptions of high detection ratio (DR ≈ 40%,

comparable to the one in [11]), medium detection ratio

(DR ≈ 10%), and low detection ratio (DR ≈ 2.5%) each.

These values are taken as average over the course of the

epidemic, including a probable improvement in detection

between calendar weeks 11 and 12 due to the significant

increase in the number of tests conducted.

The model used for simulation is an extended version

of the classical susceptible - exposed - infectious - recov-

ered (SEIR) system, with three age groups and different

compartments of infectious individuals (based on our

previous work [11]). Case and death counts reported in

Germany by the Robert Koch Institute (RKI) as of April

24, 2020 were used for model calibration. In essence, this

means estimating the effective contact rates only up to the

lock-down situation in force until April 19, 2020. Though

lock-down measures were partially relaxed starting on

April 20, 2020, this would not show in the most recent

data due to both the latency time of infection and delays

in reporting. Hence the parameters used for simulations

after April 20, 2020 have not been obtained from the data

but rather assumed for the expected effects of the relaxed

restrictions. We show model simulations of the following

scenarios for Germany.

A Nonmedical interventions as of April 25, 2020,

including the most recent relaxation of some

lock-down measures (starting April 20) and partial

reopening of schools. This results in slightly

increased contact rates (undoing about 20% of the

original contact reductions) in the work/school and

leisure realms while all else is kept as in the baseline

scenario we included as D.

B Interventions as in A, plus an additional fatigue effect

leading to general awareness wearing off. People are

assumed to become less careful in, e.g., sanitizing

hands, keeping distance in public space, or

coughing/sneezing protocol. This is assumed to

gradually and partially reduce the effect of general

awareness by about 50% of its original effect over the

course of 8 weeks.
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C Interventions as in A, assuming increased efforts

isolating known and suspected infected individuals

(called strict case isolation, sCI, in [11]) setting in on

April 27, meaning that both detected cases and

putative cases (identified as recent contacts of

detected cases) are quarantined, resulting in

decreased contact rates. As long as the number of

active cases remains relatively low, this could be a

feasible strategy.

D The original baseline scenario from [11] with

interventions in place as of April 14. This is a

counterfactual scenario assuming the restrictions in

place had not been relaxed starting on April 20 and

shown for comparison purposes. Model assumptions

concerning the supposed effects of these

interventions on contact rates are explained in detail

in [11].

Model simulations were run until the end of the epidemic,

that is, until the number of active cases becomes insignifi-

cant due to the reproduction numberR being persistently

smaller than one. Note that this may be due to sufficiently

low effective contact rates (cf. scenarios C and D in Fig. 1),

or due to sufficiently many individuals having contracted

the infection, hence having been removed from the pool

of susceptibles (cf. scenarios A and B in Fig. 1). Needless

to say, such long term projections are purely hypothetical

since they neglect any possible reactions to the evolving

situation. Specifically, it should be expected that signifi-

cantly falling case numbers induce contact restrictions to

be relaxed further, while rising case numbers might lead

to new interventions. The precise numbers predicted by

the simulations are not our main concern here. We rather

want to emphasize the sensitivity of predictions to the

detection ratio, that is, the different behavior exhibited by

the system under the assumption of low, medium, or high

detection ratios.

In Fig. 1, we show the number of active cases over

time for the scenarios described above and low, medium,

and high detection ratio each. For each simulation we

show active detected cases by which we mean the num-

ber of patients having tested positive and having not yet

recovered or deceased. Notice that these numbers differ

significantly from the official active case numbers since

the definition of recovery in official reports is based on

the assumption that an individual can be safely viewed as

recovered when released from hospital with no symptoms

or when 14 days have passed since the positive test with-

out the individual reporting with severe symptoms (see

also "Availability of Data andMaterial"). The average dura-

tion of the infection is significantly shorter which leads to

fewer active cases in the simulations since infected indi-

viduals are removed faster than officially reported. We

also show the actual total case numbers which are all

currently infectious individuals, including asymptomatic

ones, independent of detection. The effect of different

detection ratios is most striking in scenarios A (Fig. 1a)

andB (Fig. 1b). At the time of writing this text, after having

relaxed some of the measures, the reproduction number,

R, in Germany appears to be close to one, and the system

is very sensitive to the proportion of susceptibles among

the population. A high detection ratio implies that only a

very limited number of infections remained undetected,

and given the current number of detected cases, most

individuals are still susceptible. In contrast, a low detec-

tion ratio suggests that a significant number of infections

has been going on unobserved, and there would already

be a significant number of recovered, hence immune, indi-

viduals. This can make the difference between R > 1,

leading to a second peak, or R < 1 and the epidemic

subsiding. In both other scenarios (C and D, shown in

Fig. 1c and Fig. 1d, respectively) the reproduction num-

ber is overall smaller than in A and B for all assumed

detection ratios. We therefore primarily observe a quanti-

tative difference. Again, in these scenarios, assuming a low

detection ratio means that more susceptibles could have

already turned into recovered individuals, makingR even

smaller, and therefore leading to the epidemic subsiding

faster. The smallest effect of variations in the detection

ratio is observed in scenario D. In this scenario very low

effective contact rates were maintained over time even

after April 20, 2020. This fact reduces R to such small

values that the lower number of susceptibles in the low

DR-case does not make a significant difference.

Noteworthy is the effect of different detection ratios on

the projected fatality number over the course of the epi-

demic. These numbers are obtained from the simulations

by assuming a constant infection fatality rate for each

age class, meaning that the same percentage of infected

individuals die, independent of the actual detection rate.

Parameters were set to fit reported death counts until end

of March 2020 (taking into account the significant report-

ing delay for fatalities). The fatality rate among undetected

(symptomatic) individuals is assumed to be significantly

smaller than among detected ones, as it is feasible that

critical cases are more reliably detected. In scenarios A

and B, the assumption of high or medium detection ratios

lets us predict a second peak of the epidemic, over the

course of which many more fatalities are to be expected.

These would not be predicted if a low detection ratio

were assumed (Fig. 2). The situation is aggravated by the

fact that a low detection ratio means that the case fatal-

ity rate (percentage of fatalities among detected cases) is

considerably higher than the actual lethality (or infection

fatality rate, cf. [6]) of the disease. Projecting observed

case fatality rates into the future therefore produces over-

estimations of total fatality numbers. The overestimation

becomes more pronounced the lower the detection ratio.
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Fig. 1 Active cases over time. Model simulations for detected (solid) and total (including asymptomatic; dotted) active cases over time for different

scenarios. Notice the different scaling for detected (left axis) vs. total (right axis) cases. For each scenario, the results for high (DR ≈ 40%), medium

(DR ≈ 10%), and low (DR ≈ 2.5%) detection ratio are shown in green, red, and blue, respectively. Before April 20, all scenarios and detection rates

yield similar results for the detected cases while total cases show the obvious differences for different detection ratios. Minor deviations in detected

cases before April 20 result from slightly different fits to the weekly fluctuations in tests administered. Notice the different time scale for scenario D

where the epidemic were to subside within a few months rather than years

Fig. 2 Projected fatality numbers. Projected cumulative fatality numbers under scenarios A (solid) and B (dotted) for different assumptions on the

detection ratio. It is obvious that assuming a lower detection ratio leads to lower predicted total fatality numbers
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Conclusion

While enormous efforts are undertaken all over the globe

to stop the COVID-19 pandemic and limit its conse-

quences, more and more studies indicate that a large

portion of cases could have remained undocumented [12].

Here we showed how the knowledge of the detection

ratio of COVID-19 infections is of crucial importance for

model-based predictions on the further course of the out-

break and its control. This emphasizes the urgent need

for screening representative samples of the population in

order to determine the prevalence of antibodies against

SARS-CoV-2. Studies like those reported in [9] for Ger-

many or in [13] for California are promising first steps but

more widespread screening with selection processes min-

imizing biases are necessary to obtain better estimates of

past detection ratios. Continuous indiscriminate testing

of individuals for virus RNA may further help to uncover

temporal changes of detection ratios. It remains to be

determined whether wide range screening would also help

limiting the spread of the disease [14]. We conclude by

noting that the difficulties in predicting an outbreak out-

come are not limited to COVID-19 but pertain to any

novel infectious diseases, making it even more impor-

tant to not forget this lesson even after the COVID-19

pandemic will have been resolved.
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